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A Globally Convergent Method for Simultaneously 
Finding Polynomial Roots* 

By L. Pasquini and D. Trigiante 

Abstract. A new method for the simultaneous approximation of all the roots of a polynomial 
is given. The method converges for almost every initial approximation, the set of the 
exceptional starting points being a closed set of measure zero, at least if all the polynomial 
roots are real and simple. The method exhibits quadratic convergence not only to simple, but 
also to multiple roots. 

1. Introduction. One of the more effective methods for the simultaneous approxi- 
mation of the roots of a polynomial, the origin of which is attributed to Weierstrass 
[1], is the one published by Kemer [2], [3] and, independently, by Durand [4]. In a 
modified form it was also studied by Ehrlich [5] and Aberth [6]. This method can be 
defined as follows. Let 

N N 

(1) f(s) = (s - ak) = akS , a0 = 1 
k=1 k=O 

be the polynomial with real roots ak (k = 1, 2,... ,N). The method, which, in short, 
will always be referred to as the W-method, can be defined by the sequences 

(2) ~~~~~~n) (n-1) k 
_______ (2) x() x(-- xn1 

k k 
fnik(x(n-1) -x(n-l) 

where k = 1, 2 ... ,N, n = 1, 2, ... and x(0), 4x),.(.. ,x ?) E R. 
It can be proved [2], [7] that the W-method is equivalent to a Newton method in 

an N-dimensional space by considering the function 

(3) F: RN ) RN, F(x) = (Fl(x), F2(x), . FN(x)) 

where the functions Fk are defined as follows: 

(4) Fk(X) = Sk(X) +(1) klak, k = 1,2,....N, 

and Sk is the elementary symmetric function of degree k. By putting a= 
(alg, a 2,... ,9ON), one has F(a) = 0 as a consequence of the fact that, if x = a, the 
Fk(x) = 0 (k = 1,2,... ,N) tum out to be the well-known relations between the 
roots and the coefficients of the polynomial (1), and the W-method described by (2) 
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is, in effect, equivalent to Newton's method 

(5) x n) =x (n- 1) _ j-l(X(n- 1) )F( X(n - 1 

applied to the equation F(x) = 0. In (5) J-1 denotes the inverse of the Jacobian 
matrix J of the function F. The matrix J is a generalized Vandermonde-type matrix 
and an explicit expression of J-1 can be given [7]. One property of the method is the 
following 

N 

P1: X(n) = -al , n = 1,2, ..., 
k=1 

essentially due to the definition of F1, Fl(x) = k=lXk + a,, and its linearity. 
As the W-method is the same as a Newton method, the convergence will be 

quadratic whenever det J(a) # 0, i.e., whenever the roots ak are all simple. 
Moreover, as (2) always converges in practice, the conjecture has been advanced 

that the W-method converges with almost every starting point. Except for the case of 
N = 2, however, [1], [7], a proof of this conjecture still has not been given. 

In Section 2 a new method will be presented which not only preserves all the 
above-mentioned favorable properties of the W-method but also presents other 
.characteristics that make it more interesting. In fact, it will be shown that the new 
method: 

(A) is globally convergent (see Section 5), at least when applied to polynomials 
with real and simple roots, the exceptional set of starting points being a closed set in 
RN of measure zero; 

(B) can be used also if the function f is not a polynomial but any sufficiently 
smooth function; 

(C) is at least locally convergent to the real roots if the polynomial (1) has also 
some complex roots; 

(D) can yield quadratic convergence not only in the case of simple roots, but also 
when multiple roots occur. 

In the last section numerical examples will be given which illustrate some of the 
above properties. 

2. The New Method. Let xl, x2,... ,XN E R, x = (x1, x2,... ,xN) and let us 
modify the definition of the function (3) by replacing (4) with 

(6) Fk(X) = f [x1, x2, . .,Xk], k = 1, 2,... ,N, 

wheref[xl, x2, ... 9,Xk] is the divided difference off with respect to the arguments xl, 

X2,. *Xk 

PROPOSITION 1. Except for permutations of the coordinates, a = (a1, a29 ... 9 aN) is 

the unique solution of the equation 

(7) F(x)=0. 

Proof. Proposition 1 can be easily proved by considering that, by using the 
Newton interpolation formula, one obtains, Vs e R, 

N k-1 N 

f(s) F 1= (S - xi) + (s - xi) 
k=1 = = 
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Applying the Newton method to the equation (7): 

(8) x (n)= (x(n-1)) I 1(x) = x -J-l(x)F(x) 

the Jacobian matrix J(x) comes out to be the following: 

f 

[XN 

X, 

X] 

] 

J(X)= f[X1,X, X2] f[X1, X2, X2] 0 
*.............. 'f 

.Xl X2* XN.N 
f [xl, Xl, X2, ........,XN] f [Xl, X2, X2,---XN I[l X21-1N] 

.... 

and it is important to observe that J is now a lower triangular matrix. 
The new method just described (see (3), (6), (8)), as it is defined by the divided 

differences of the function f, remains meaningful also when f is not a polynomial but 
any sufficiently smooth function. For example, the following Proposition 2 can be 
proved with arguments very similar to those used in the proof of Proposition 1. 

PROPOSITION 2. Let f be a smooth enough functicn. If Fk(x) = 0, k = 1,2,9... .M 

thenXl X2, .. . . ,XM are roots of the equation f(s) = 0 and vice versa. 

Therefore, whenever it is not explicitly specified that f is the polynomial (1), it will 
be understood in the following that f is, more generally, any sufficiently smooth 
function. In that case, N will simply continue to mean the chosen number of scalar 
equations in (7) and, consequently, the dimension of the space in which the problem 
will be considered. 

PROPOSITION 3. If f is the polynomial (1), all the approximations x(n) generated by 
(8) verify property P1, i.e., 

N 

(9) ~~~~~E X(n) = -a, , n =12,.... (9) ak =12 
k=1 

Proof. Equation (9) follows from the definition of FN: FN(x) = EkNXk + a, and 
from its linearity. r1 

THEOREM 1. Let ?(x) = (01(x), 2(x), . . . I 'N(X)) where D is the function defined 
by (8). The functions Dk can be written as 

Dk(X) = Xk - Ak(X), k = 1,2,... ,N, 

where the A k satisfy the recurrence relation 

(10) Ak(X) = f [x1, x2. ... ,Xk] - ,k-lf f[X1 X29... 9X1, X19... ,Xk]A/(X) 
10) zXk(x) 

~~~f [x1, X29. 
. 

Xk, XkI 

with E? = 0. 

Proof. The elements Jk,l7 of J1 can be expressed as follows: 

k-1 

E JkhJh; if k > 1, 
hkk h=1 

(11) J4-1= 0 if k < l, 

| 1 if k=l. 
Jk k 
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Indeed, it is very easy to check that (J * J-1)kl = 3k1 holds in the case of k < 1 if J1 
is defined by (11). In the remaining case k > 1, one has: 

k-1 k-1 k-1 

( J J ) kl E Jkh Jh, + Jkk Jk, = E Jkh Jh, -Jkk Jkk E JkhJh,l = 0 
h=1 h=1 h=1 

Since 

k 

Ak E JlklFl, 
l=l 

there results, in view of (11), 

k-1kh-1 J-F k-1 h ] 
Ak = A Fk- E E Jk h J;1 Fl j -Fk -E Jk E J;-1F ] 

A k Fk 1=1 h=1 jkk h=1 l=1 

1 k-1 

J Fk- JkhA^h 
kk h=1 

which concludes the proof. E 

COROLLARY 1.1. Since A1(x) = f(x1)/f'(x1), the first component (D, of ( is exactly 
the iteration function of Newton 's method applied to the equation f(xl) = 0. 

COROLLARY 1.2. The functions Ak and (k depend only on xl, x2,... .Xk' 

An important consequence of the above result is that the behavior, for increasing 
n, of the first coordinates x(n), xn). . ,xn) 1, is in no way influenced by that of the 
following coordinates. The main advantage resulting from this property consists of 
the possibility to reorder the coordinates during the procedure by putting in the first 
positions those with better convergence properties, in such a way that the possible 
nonconvergence or slow convergence of some coordinates has no influence on the 
others. 

It will be shown that this property can be useful not only if the equation f(s) = 0 
is solved by the method defined by (3), (6) and (8) with a value of N greater than the 
total number of the real roots, but also in the general case, especially if not all the 
roots ak are simple or, more generally, if real roots of different multiplicities occur. 
In these cases the above-described technique of reordering coordinates results in an 
appreciable convergence improvement (see also, for a relevant numerical example, 
Tables 2.1 and 2.2 in Section 6). 

3. Local Convergence. A detailed study of the other properties of the method 
requires the following four lemmas. 

LEMMA 1. Let A: R -p R, qm: R -p R, be the functions defined by 

m-1 

(S) I (s - ai), f (s) =(s)q(s) 

Then 

f [a1 a2,... *m- Xm Xm?X+.. . *XkI = qml Xm?im . . . ,XkI. 
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Proof. Using the Leibniz formula for the divided differences [9, p. 5], since 4 is a 
monic polynomial of degree m - 1, one obtains 

m-1 

f [Xl, X2,... *Xkj = E [XlX2 x .,xl]qm[xl,xl+,. . . ,Xk] 
l=l 

+qm[Xm, Xm+l,...Xk]l 

and the thesis follows by observing that 4[a1, a2,... a,ll] = O, / = 1,2,...,m - 1, by 
virtue of Proposition 1. O 

Interesting information on the local convergence toward the root a = (a1, 
a2,... , aN) of (7) will also be obtained by considering the multiplicity of a and by 
studying some differential properties of the function F defined by (3) and (6). In this 
paper we will refer to the multiplicity definition given in [10]. 

Let F(')(x) be the ith derivative of F at the point x and X(F(i)(x)) its null space. 
Furthermore, let Xi (i = 1, 2,. . . ) be the spaces 

(12) /1 = A(F'(a)), Xi = Xi-,n1 X(F(i)(a)), i = 2,3,..., 

and di the dimension of Xi: 

(13) di dim(Xi), i = 1,2,.... 

One can then say [10] that the root a of the equation (7) is of multiplicity u if 

(14) di > 1, i = 1,2,.. .,,u - 1, d, = 0. 

LEMMA 2. Let M, 1 <s M <s N, be the number of different roots of the equation 
f(s) = 0, and Ih (h = 1, 2,. . ., M) the set of the indices of those components of a which 
are equal to the hth of the above-considered different roots off(s) = O. Finally, let 

mh = maxIh, h = 1,2,...,M. 

Then the elements Jkl(a) of J(a) are such that 

Jkl (a) f [ a,,. . .,l,a/l, ,ak] 

(0 if l e Ih, k < mh, 

\f [a,,..., amh * m h ? ,a/k] # 0 if 1 e Ih, k > mh- 

Proof. Note, first of all, that for any fixed k the value of Jkl(a) is the same for all 
the 1 e Ih by virtue of the symmetry of the divided differences with respect to their 
arguments. From Proposition 1 it can then be deduced that f[a1, . . , a/, a,. .. , ak] 
may be different from zero only if the argument a/ appears repeated a number of 
times greater than the multiplicity of a/. This is possible only in the case 1 e Ih, 
k > mh, and it is easy to see, by using for example Lemma 1, that in this case 

f[al,... ,a, a,. ,ak] is different from zero. 0 

LEMMA 3. The Frehet derivative F'(a) at a is nonsingular, and therefore a is a root 
of multiplicity ,u = 1, if, and only if, all the roots ak are simple roots of the equation 
f(s) = 0. In general, the null space of F'(a) is given by 

(15) . x/E=( RN I E Xk = O , h = 1,2,... M), 
k e i 
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and, hence (see (12) and (13)), 

d, = N - M. 

Proof. This lemma is a consequence of the preceding one. In fact, F'(a) can be 
represented by J(a) and therefore the condition 

(16) F'(a)x = 0 

is equivalent to J(a)x = 0 and hence to 

k 

(17) EjJk4(a)xl = 0, k = 1,2,...,N. 
1=1 

Lemma 2 shows that, only if the ak are all simple roots of the equation f(s) = 0, is 
J( a) nonsingular and one has d, = 0, IL = 1 (see (14)). By imposing in succession the 
N conditions (17) and using Lemma 2 again, it is then easy to check that x satisfies 
the condition (16) if and only if it belongs to the set described on the right-hand side 
of (15). E 

LEMMA 4. Let f be the polynomial (1). The null space of the second Frchet derivative 
F"(a) at the point a is given by 

(18) X(F"(a)) = { x E RNIX X = = * 

and, hence (see (12) and (13)), d2 = 0. 

Proof. The second derivative F"(t) at (-19, .2. ... 9N) can be represented by 
the array 

(19) (al f t 
Analogously, F"(t)x may be represented by the N x N matrix, the jth column of 
which is (8J(()/8at)x. If f is the polynomial (1) the two last rows of (19) are, for any 

l l l I 

(20) 211 *-- 10: 121 .. 10 * 111 *-- 20 000 ... 00 
000 *-- 00: 000 ... 001 I 000 ... 00 000 ... 00 

and, hence, the condition F"(t)x = 0 is satisfied if and only if x belongs to the set 
described on the right-hand side of (18). Indeed, since all the matrices U(()Ia 
which form (19) are, as the matrix J, lower triangular, the condition xl = x2 = 

... 
= XNA1 = 0 implies (see also (20)) that F"(t)x = 0. But the converse is also true as 
F"(t)x = 0 implies (see (20) again) 

121 ... =0X 

111 ...2 x 

and the determinant of the above matrix is equal to N. E 

THEOREM 2. The root a of the equation (7) is of multiplicity Jt = 1 if and only if the 
ak are all simple roots of f(s) = 0. Iff is the polynomial (1), one always has 1t < 2. 
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Proof. The theorem is a direct consequence of the preceding definitions and 
Lemmas 3 and 4. El 

The next theorem holds not only for the particular Newton method defined by (3), 
(6) and (8) but, in general, for any Newton method applied to an equation (7) if F is 
smooth enough. It is contained in the results shown in [10] by L. B. Rall who also 
analyzes the behavior of the component '(n) of the error decomposition considered 
in the theorem (see (21)), proving, essentially, that it also converges to zero, though 
only linearly. 

THEOREM 3. Let X be the orthogonal complement of X1 and 

(21) X(n) =aon + (n) (n) - 7(n) + (n) 7(n) E X, t (n) E- 

Then, 

(22) 7(n+l) = O(IIE(n)112). 

Proof. The assertion (22) follows essentially from the definition of Newton's 
method 

F'(X(n))(n+1) =F- F(x(n)) E(n) - F(X(n)) 

by expanding F' and F: 

[F'(a) + F"(a) .(n) + F2( a) (,(n))2 + 
. 

(n + 1) 

F"(a) (,(n))2 +F" (a) ((n))3 

- 2 ( 5n))n + + 

and by observing that F'( a) as an operator on X is nonsingular. E 
The result stated in Theorem 3, in the case of the method defined by (3), (6) and 

(8), acquires an especially significant meaning, due to the particular form of the 
subspaces X1 (see Lemma 3) and X (see the following Lemma 5). This gives rise to 
one of the main properties of the method, stated below in Theorem 4. 

LEMMA 5. The orthogonal complement X of the subspace X1 stated in Lemma 3 is 

X= {x E RN Xl = XkVi k EIh; h = 1,2,...,M}. 

Proof. It is easy to check that the dimension o4 X is equal to M and that the scalar 
product between any two elements of the subspaces XI and X is equal to zero. El 

THEOREM 4. For each h, 1 < h < M, let Vh be the number of elements belonging to Ih 

(i.e., Vh is the multiplicity of the hth of the M different roots of the equation f(s) = 0), 
and let x(n) be the "nth average-vector"9 

^(n)-- (n) Xk (n) (n) X - 1 9X2 9.. 9XN J 

having the components x(n), k E I'h equal to each other and equal to the average 

x(n) k(n - 

Ele lhx I h/^ 

x - , I Vk E Ih (h = 1,2,...,M). 
lh Ih 
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Then one has 

(23) x(n+l) -a = - 

Proof. Consider x(n) and a. They both belong to the subspace X defined in 
Lemma 5 and, by using this definition of X again and that of X1 stated in Lemma 3, 
it is easy to check that x(n) - a comes out to be exactly equal to the 71(n) defined in 
(21): 

k(n) a (n) X () a = q( . 

The proof is now concluded by using Theorem 3. 0 
Remark 1. Theorem 4 shows that the method defined by (3), (6) and (8) is 

essentially a procedure for obtaining, by averaging the coordinates of x (n) which 
converge to the same root of f(s) = 0, a convergence of quadratic type to all the 
roots ak of f(s) = 0, independently of their multiplicity. 

Remark 2. By virtue of the triangular structure of F (see (6)) and J, Lemmas 3 and 
5, as well as Theorem 4, can also be referred, more generally, to the space RN 

spanned by the coordinates xl, X2.... I ,xj, where 1 < N < N. The arguments 
involved need only a simple generalization which can be briefly summed up by 
describing the generalized forms assumed by the subspaces X1 and X. These can be 
easily found, bearing in mind the arguments used in the proof of Lemma 2, 

Xl {x ER | Xk = 0ifmh MhN 
k EIh 

X {x E R xi =xkVi, k Eh 9, if mh <N; Xk= OVk EIh, if mh > N). 

This generalization allows one to improve the information given by Theorem 4 on 
the local convergence properties of x(n) near a from the description of the local 
convergence properties near a = (a1, a2, ... 9 a) of the projection of x(n) into RN. 

Such an analysis suggests the opportunity of reordering the coordinates of x (n) when 
multiple roots of f(s) = 0 occur by putting in the first positions those coordinates 
which converge to the simple roots. This results in a better use of the result of 
Theorem 4 and, consequently, in an appreciable improvement of the convergence 
properties. 

Remark 3. When f is the polynomial (1), more detailed information can be 
obtained by using Proposition 3 in some particular cases. It is worth noting the 
following: 

1) If the polynomial (1) has a unique root a* of multiplicity N: a= 

(a*, a, ... ., a*), it follows from (9) that 

N 

x(n)/N = -a1/N = a*, n =1, 2.... 
k=1 

By using the notations introduced in Theorem 4, this means x(n)- a = 0, n = 

1, 2,. .., which is obviously stronger than (23). (See, for example, Table 3 in Section 
6.) 

2) If the polynomial (1) has a simple root a1 and a root a* of multiplicity N - 1: 
a = (a1, a*, ... . ,a*), the coordinates of x(n) - a, considered in Theorem 4, come 
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out to be the following: 

N 

(n)-1 X - a1 (n). k(n)- = E X()(N- 1) - , 
1=2 

k= 2,3,...,N. 

Then Proposition 3 allows one to improve the information given by (23). In fact, by 
considering that (9) can be written in the equivalent form 

N N 

x(n) 1 = 0, 
1=1 1=1 

one gets 

N 

(n)-a*= a x*(n)/(N-1)-a_* =- (n)/(N-1), k = 2, 3,... .,N. 
1=2 

This means that the error relative to the average of the coordinates of x(n) which 
converge to the root a* of multiplicity N - 1 is N - 1 times smaller than the error 
f(n) of the coordinate x(n) that converges to the simple root a1. Note (see Corollary 
1.1) that E(n) converges to zero as the error of the Newton method applied to the 
equation f(sl) = 0 in a neighborhood of a simple root. (See, for example, Table 2.2 
in Section 6.) 

4. Global Convergence. In this section the method defined by (3), (6) and (8) is 
examined in the case of a polynomial (1) with real and simple roots. 

Interesting information which completes that already stated in Corollary 1.1 and 
which concerns the behavior of the method near the subset Sm c RN: Sm = {x E 

RNlxk = ak, k = 1, 2, ... ,m - 1), with 1 < m < N, can be obtained from Theorems 
5 and 6. 

A study of the method near Sm means that one hypothesizes intermediate 
situations in which only a certain number m - 1 of the roots ak have as yet been 
accurately approximated by the first m - 1 coordinates of x (n). This is a theoretical 
hypothesis which will allow us to show that the function Om in (8) tends to the 
iteration function of the Newton method applied to the equation qm(s) = 0 (see 
Lemma 1 for the definition of qm), and, consequently, also x () must converge to 
another root am off(s) = 0. Finally, a result due to Bama [11] (see Lemma 6 below) 
is applied to prove global convergence (Theorem 7). 

Note, however, that this theoretical hypothesis actually represents a realistic 
model for the convergence of x(n) only in the case of particular starting points x(?) in 
which the accuracy of the first m - 1 coordinates is much better than that of the 
remaining ones. In other words, x () does not normally have to wait for the 
preceding coordinates x (n), xn) . x(n) 1 to practically coincide with a,, a2,... ,am1 

before starting to converge toward am. 
To make the statement of Theorem 5 simpler it is convenient to slightly modify 

the notations, making evident the dependence of D on the polynomial and the 
dimension of the space in which the method defined by (3), (6) and (8) is applied. 
The function D in (8) will thus be denoted by ?(x; f, N). Moreover, t denotes a 
point belonging to Sm and to the open set sa c RN in which ?(x; f, N) is defined. 



144 L. PASQUINI AND D. TRIGIANTE 

Note that = RN \ Jo, where J0 is the closed set of measure zero: J= {x E 

RNI det J(x) = 0), namely, the set in which at least one of the divided differences 
f [X1 X29 , * * Xk, XkI k = 1, 2, ..., N, vanishes. 

THEOREM 5. Let t be any point belonging to Q n Sm and qm the function considered 
in Lemma 1. Then 

1) (k((; f, N) = alkg k = 1, 2,. ... , m - 1 
2) 'm(t; f, N) = Xm -qm(xm)lq(xm); 

3) Dm+k-l((; f, N) = k((Xm9 Xm+1,... 9 XN); qm, N - m + 1), k = 1, 2,..., 
N - m + 1. 

Proof. The assertions 1), 2) and 3) easily follow from Theorem 1 and Lemma 1. 

Remark 4. Since the case of the polynomial (1) is being considered in this section, 
it is worth noting that Theorem 5 can be proved exactly with the same arguments 
even if f is only supposed to be, as in Theorem 1 and Lemma 1, a sufficiently smooth 
function, assuming that a1, a2 ,... , m_ are simple roots of the equation f(s) = 0. 

Now, let 8k (k = 1,2,... ,N - m) be the roots of qm(s) = 0, m the set Om= 

{ s E Rls 0 84k k = 1, 2, ... ,N - mi), and C any closed subset of Om. Moreover, let 
A(mn) be the functions defined by 

\(n)(S) = Am(X(n), X(n),.. . ,Xn) 1, s) 

The following theorem holds. 

THEOREM 6. Suppose that x(n) converges to ak, k = 1, 2,. .. , m - 1. Then for any 
fixed C, a constant L = L(m, C) and an integer y = y(m, C) exist such that 

(24) A(mn)(s) -qm(s)/qm(s) < Lpmn)j Vs E C, n > y, 

where 

m-1 1/2 

p m(n ) 1= ( n) 2 

i=l 

Proof. Consider first the polynomial of degree N - m, f [x(n), x ,n) . . . ,x(n)1, s, s], 
which appears in the denominator of A(n)(S) (see (10)), and note that, as a 
consequence of Lemma 1, one has f[a,, a2, ... ,aml1 s, s] = q (s). Therefore, the 
assumption x(n) - -) (k = 1,2,... ,m - 1) can be used for asserting that a y= 

y(m, C) exists such that the above denominator does not vanish in C for n > y. 
Then, for any n > y, s E C, we can write, considering that, as a consequence of 
Lemma 1, one hasf [a1, a2,... *am-1, s] = qm(s) 

ns)- qm(s)/q' (s) = Y, -xt ( T2 'r ...ml Ymn) ) /t as\ m (T _, S)E(n) 

where the Tk depend on s and n and 0 < ITk - akl X i4n - kl. Thus, the Tk can be 
considered to belong to compact sets. On the other hand, one easily checks that the 
alm/axi (which are continuous functions), for fixed values of the first m - 1 
variables, are the ratio of polynomials of the same degree 2(N - m) in the mth 
variable s. Thus the proof can be concluded by standard arguments. Z1 



A METHOD FOR SIMULTANEOUSLY FINDING POLYNOMIAL ROOTS 145 

Theorem 6 essentially says that if the first m - 1 coordinates of x (n) converge, i.e., 
if pfn) 1 converges to zero (note that it will then converge quadratically, see Theorem 
4 and Remark 2), the sequence of the functions /(mn) converges uniformly to qm/qm in 
any closed set C contained in gm. The consideration of sets C(a) of the type 
C(a) = {s E RI Is - /i31 > a, i = 1,2,...,N - m},with a > 0, is of particularinter- 
est. One can derive from Theorem 6 the following corollary which brings into 
evidence that A(n) can be considered arbitrarily close to qm/qm in an unbounded set 
arbitrarily close to gm if n is large enough. 

COROLLARY 6.1. Let { ai }, {Ti } be any prefixed sequences which decrease and 
converge to zero. Then, for each i, an integer n-i exists such that 

J\mn(S) - qm(s)/qm(s)l <Ti 5Vs E C(ai), n > n-. 

Finally, a result due to Barna [11] and reported in [12] by S. Smale, is stated in the 
following Lemma 6. An outline of the proof can be found in [12]; it is based on the 
fact that, on the hypothesis of the lemma, T(s) = s - f(s)/f'(s) defines an Axiom 
A dynamical system on the one-dimensional projective space. 

LEMMA 6. If f is a polynomial with all roots real, Newton's method applied to the 
equation f(s) = 0 converges to a root with almost every starting point, the exceptional 
set E1 of starting points being homeomorphic to the Cantor set. 

We are now in a position to prove 

THEOREM 7. Except for starting points x (0) belonging to a closed subset of RN of 
measure zero, the equations (3), (6) and (8) define a sequence { x (}n=12. which 
converges to a root of the equation (7). 

Proof. By virtue of Lemma 6 and Theorem 5 one does not have to consider the set 
of the x(o) which have the 1st coordinate x(?) belonging to E1 or, analogously, which 
belong to a certain Sm and have the mth coordinate x ?) belonging to the correspond- 
ing exceptional set Em of the Newton method applied to the equation qm(s) = 0. 
Furthermore, the set of the x(?) such that x(n) will belong to J0 for some value of n 
must obviously be left out. The union of these sets is closed and has measure zero 
and with respect to any one of the x(0) of the complementary set the following is 
true: the equations (3), (6) and (8) actually define a sequence { x (n) }n 1,2,... and the 
1st coordinate x(n) converges to a root a( off(s) = 0. 

The assertion can then be derived by the results already stated in this section. 
They allow one to exclude the possibility that a certain number m - 1 of the first 
coordinates x(n), x(n)n x n) of x(n) converge to m-1 roots a(, a2,... ,am1 

without the next coordinate x n) converging to another root am. 

In fact, since Lemma 6 can also be applied to the equation qm(s) = 0, then 
Tm(s) = s - qm(s)/q (s) also defines an Axiom A dynamical system in the projec- 
tive line and, furthermore, 4Dm(x(n), x(n)... ,xn) ,s) can ultimately be assumed 
arbitrarily close to Tm(s) in a set C(a) arbitrarily close to the whole gm. [It can also 
be observed, for completeness, that (see also (10)) a can be assumed so small and n 
so large that if the sequence of the x n) goes once out of C(a) then it will necessarily 
start to converge to the largest, or to the smallest, root of qm(s) = 0.] Thus x n) too 
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will converge with the same convergence properties of the Newton method applied 
to the equation qm(s) = 0. E 

5. An Effective Formulation of the Method. The formulation of the method can be 
further simplified if the function f is the polynomial (1). In fact, by using (1) and 
Proposition 3, one easily obtains from (10) of Theorem 1 the following representa- 
tion of the method: 

xn X - 
n 

k k = 1, 2,.. ,N- 1, 
N-1 

XN _a_a l k 

k=1 

= (Pk - E Tl Al)/Tkk (E = 

where 
N-k+1 N-k 

Pk E aN-k+1-iPik 71k EaN-k-jqk[11 
i=O i=O 

and 

Phr Ph,r-1 + Xr Ph-l,r POr 
= 1 Vr > 'PhO - OVh > 0, 

q[m] = Phr + X( qh-l,r qOr ]- r>1,m >1 

The above formulae describe the method in its elementary or basic form. This 
basic form can then be implemented by some procedures which are suggested by the 
results stated in the preceding sections. 

For example, it has been seen that it is advantageous to get into the first positions 
the coordinates of x((n) which converge to simple roots when multiple roots of the 
equation f(s) = 0 are present, and such an arrangement of the x n) can be obtained 
by proper rearrangements during the execution. More generally, it seems reasonable 
to implement the basic form of the method by a procedure that forces the sequence 
{x(n)} to converge to a root a of the equation (7) in which the roots ak of f(S) = 0 

are arranged in increasing order of their multiplicity. 
Suitable tests can be inserted to recognize the convergence to multiple roots of 

f(s) = 0 and to determine the multiplicities during the execution. Those multiple 
roots will finally be computed by the averages described in Section 3. 

These procedures, which have been employed in [8], can also be used when f is a 
sufficiently smooth function. 

6. Numerical Results. Some numerical results are reported in this section. They 
illustrate properties of the method described in the preceding sections. 

In Table 1 the results obtained in the case of the polynomial with simple roots 
f(S) = (S2 - 1)(s2 - 4)(S2 - 9) are listed. 

In Tables 2.1 and 2.2 the results which one obtains with the polynomial f(s) = 

(s + 2)(s - 1)2 are shown. In the first case the method is applied without rearrange- 
ments and the first two coordinates of x (n) converge to the double root, the third to 
the simple root. In the second case, the same starting point used in Table 2.1 has 
been rearranged to obtain the convergence of the first coordinate x(n) to the simple 
root. 
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TABLE 1 

n X(n) x ( n x(nn X(n) x(n) 
1 2 3 ~~~~~~~~4 5(n 6 

0 -35.0000000 36.0000000 -37.0000000 38.0000000 -39.0000000 40.0000000 

1 -29.1889314 29.8646775 -25.0593088 25.4017966 - 2.2956706 1.2774367 

2 -24.3508293 24.8063405 -15.6391913 15.6742371 200.1157521 -200.6063091 

3 -20.3244251 20.6308473 - 7.5310374 7.4239548 99.1387122 -99.3380518 

4 -16.9755082 17.1812846 2.1628441 -2.3510974 48.7213685 -48.7388915 

5 -14.1924529 14.3304426 -17.8209756 17.5668480 23.4329040 -23.3167661 

6 -11.8824995 11.9749196 -12.6342887 12.4734984 6.2875665 - 6.2191962 

7 - 9.9686656 10.0304974 - 8.6986625 8.5907444 -8.1819410 8.2280274 

8 - 8.3871868 8.4285091 - 5.6546319 5.5767515 0.5788853 - 0.5423272 

9 - 7.0854039 7.1129838 - 3.1675530 3.1052242 -33.9307322 33.9654811 

10 - 6.0200352 6.0384070 - 0.6984303 0.6380236 -16.7238216 16.7658567 

11 - 5.1557902 5.1679849 7.3498595 -7.4390178 - 8.2871488 8.3641125 

12 - 4.4643138 4.4723499 5.4791405 - 5.5272171 - 2.2094094 2.2494499 

13 - 3.9234913 3.9287031 4.1280941 - 4.1546787 2.5778363 -2.5564636 

14 - 3.5171780 3.5204332 3.1830384 - 3.1981566 - 0.1697105 0.1815735 

15 - 3.2351724 3.2370203 2.5625662 - 2.5712744 7.2957225 -7.2888621 

16 - 3.0711495 3.0719580 2.2045591 - 2.2092279 3.6379196 -3.6340593 

17 - 3.0089560 3.0091273 2.0452085 - 2.0469271 1.9272740 -1.9257266 

18 - 3.0001657 3.0001715 2.0032629 - 2.0034650 1.2196225 -1.2194262 

19 - 3.0000001 3.0000001 2.0000177 - 2.0000195 1.0197329 -1.0197311 

20 - 3.0000000 3.0000000 2.0000000 - 2.0000000 1.0001909 -1.0001909 

TABLE 2.1 

n x n 
x(n) X3 n) (x (n) +x2 n) ) /2 

0 1.1000000000000 0.9000000000000 -2.1000000000000 

1 1.0507936507937 0.9491516146689 -1.9999452654625 0.9999726327313 

2 1.0256064999099 0.9743867459325 -1.9999932458424 0.9999966229212 

3 1.0128572002852 0.9871418997619 -1.9999991000471 0.9999995500236 

4 1.0064422877835 0.9935575963212 -1.9999998841047 0.9999999420524 

5 1.0032245913762 0.9967753939100 -1.9999999852863 0.9999999926431 

6 1.0016131607924 0.9983868373537 -1.9999999981462 0.9999999990731 

7 1.0008067970788 0.9991932026886 -1.9999999997673 0.9999999998837 

8 1.0004034527610 0.9995965472099 -1.9999999999709 0.9999999999855 

9 1.0002017399423 0.9997982600541 -1.9999999999964 0.9999999999982 

10 1.0001008733624 0.9998991266372 -1.9999999999995 0.9999999999996 
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TABLE 2.2 

X(n) X(n) X(n) (x n) +x(n) )/2 fl 
1 2x3 (2 +3 

0 -2.1000000000000 1.1000000000000 0.9000000000000 

1 -2.0060606060606 0.9121212121212 1.0939393939394 1.0030303030303 

2 -2.0000243397834 0.9548089327005 1.0452154070829 1.0000121698917 

3 -2.0000000003949 0.9773983897929 1.0226016106021 1.0000000001975 

4 -2.0000000000000 0.9886991947977 1.0113008052023 1.0000000000000 

TABLE 3 

n X (n) x(n) X (n) (X (n) +X (n) x (n) )/3 

0 3.0000000000000 4.0000000000000 -5.0000000000000 

1 2.0000000000000 1.5454545454545 -3.5454545454545 0.0000000000000 

2 1.3333333333333 0.4096320346320 -1.7429653679654 0.0000000000000 

3 0.8888888888889 -0.1127640061464 -0.7761248827425 0.0000000000000 

4 0.5925925925926 -0.4282289352801 -0.1643636573125 0.0000000000000 

5 0.3950617283951 0.0692161459124 -0.4642778743075 0.0000000000000 

6 0.2633744855967 -0.0714512816179 -0.1919232039788 0.0000000000000 

7 0.1755829903978 -0.2016201668740 0.0260371764762 0.0000000000000 

8 0.1170553269319 -0.0815869673689 -0.0354683595629 0.0000000000000 

9 0.0780368846212 0.0237275084445 -0.1017643930658 0.0000000000000 

10 0.0520245897475 -0.0067710891325 -0.0452535006150 0.0000000000000 

TABLE 4 

(n) x(n) X(n) (x n) + X(n) )/2 n ~ ~~12 3x2 3 
/ 

0 -6.000000000 7.000000000 4.000000000 5.500000000 
1 -4.825607064 5.137746057 2.551330164 3.844538110 
2 -3.898731033 3.716519296 1.846675309 2.781597303 
3 -3.178412455 2.616048485 1.608298128 2.112173306 
4 -2.638603528 1.724521777 1.619086890 1.671804333 
5 -2.268836533 0.702397312 1.965783509 1.334090410 
6 -2.067484332 0.894417323 1.402923552 1.148670437 
7 -2.005485235 0.952999575 1.114329101 1.033664338 
8 -2.000039772 0.974832332 1.029171758 1.002002045 
9 -2.000000002 0.987501048 1.012547400 1.000024224 

10 -2.000000000 0.993776559 1.006224079 1.000000319 

TABLE 5 

n X(n) x(n) X (n) (X n) + X ) )/2 

0 .500000+01 .100000+01 .400000+01 .250000+01 
1 .433931+01 .342099+00 .310249+01 .172229+01 
2 .377532+01 -.197105+00 .219090+01 .996898+00 
3 .334737+01 -.724932+00 .142242+01 .348744+00 
4 .309431+01 .213345-01 .251823+00 .136579+00 
5 .300883+01 -.514314-01 .528705-01 .719550-03 
6 .300009+01 -.186657-01 .185708-01 -.474500-04 
7 .300000+01 -.928988-02 .928986-02 - .100000-07 
8 .300000+01 -.464497-02 .464497-02 .000000 
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Table 3 shows the results obtained in the case of the polynomial f(s) = s 3. The 
average of the three coordinates x(n), x(n) and x(n) is equal to the triple root for any 
value of n. 

Table 4 concerns the case of a polynomial which also has complex roots. The 
polynomial is f(s) = (s + 2)(s - 1)2(s2 + 2). 

Finally, an example for the case in which f is not a polynomial is given in Table 5. 
The function is f (s) = (cosh s - 1)(s - 3). 
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